## Dr Sam T. CarrInstitut fur Theorie der Kondensierten MaterieUniversitat Karlsruhe Room: 10-08 Tel: ++49 721 608-7006 Email: carr@tkm.uni-karlsruhe.de |

My research interest is broadly in the field of strongly correlated materials - by which I mean materials where the single particle picture breaks down due to interactions. My current interests can be divided into a few more specific areas:

**1. Low dimensional materials**

In low dimensions, correlation effects are always more pronounced due to the lack of 'room' for particles to avoid each other. On the other hand, there are powerful non-perturbative techniques in one dimension such as bosonization, integrability and conformal field theory. This allows us to make progress in constructing the phase diagram and understanding the exotic correlated phases seen in low dimensional models.

Of particular interest to me has been ladder models, where it is possible to make progress on the old question of what happens when you try to combine orbital effects of magnetic field, a lattice, and interactions all within the same framework. Another interesting example of a ladder model is the low-energy effective theory of carbon nanotubes, one of natures most perfect examples of a real one-dimensional system

**2.Quasi-one-dimensional materials and dimensional crossover**

While there is the occasional experimental example of a real one dimensional system, such as carbon nanotubes, most experiments are done on real three dimensional materials. However, if the material is sufficiently anisotropic, one may consider it as weakly coupled lower dimensional units. One than can ask the effect of this 'inter-chain coupling' on the phase diagram of the model.

Real materials that can
be modelled by such a scheme are Sr_{14}Cu_{24}O_{41} which
has a spin gap, and under calcium doping and pressure has a superconducting
transition; and the Bechgaard salts, a large class of organic quasi-one-dimensional
crystals.

**3. Ultracold atomic systems**

The recent advances in atom trap technology and the development of optical lattices (also known as 'crystals of light') have allowed the creation and measurement of quantum systems with an unprecedented level of control. This allows one to think of them as 'quantum analogue simulations' of models of strongly correlated electrons. Along with these experiments, there is much theoretical work that can be done: amongst my current interests are exploitation of the dipole-dipole interaction to engineer interesting interaction geometries, and the effect of the harmonic trapping potential on the phases of the system.

**4. Transport and non-equilibrium noise through quantum dots**

When materials become small enough in some dimensions (which is where interaction effects become strongest), standard scattering experiments become unfeasible due to the lack of scattering cross-section. For many true zero-dimensional or one-dimensional systems (as opposed to quasi-one dimensional mentioned above), the only reasonable experiments that can be performed are transport. While transport measurements themselves will not usually well probe the correlation properties of the system, the current-noise often will. These non-equilibrium properties however are still not completely understood, even for systems as simple as the Coulomb blockaded quantum dot.