3 Energy Conservation

- Different types of energy:
 - mechanical work $E_{mech} = \int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) d\vec{x}$
 - kinetic energy $E_{kin} = \int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) d\vec{x} = m \int_{\vec{x}_1}^{\vec{x}_2} \vec{a}(\vec{x}) d\vec{x} = m \int_{\vec{x}_1}^{\vec{x}_2} \frac{d\vec{v}}{dt} d\vec{x} = \int_{t_1}^{t_2} \frac{d\vec{v}}{dt} \vec{v} dt = m \int_{t_1}^{t_2} \vec{v} d\vec{v} = \frac{1}{2} m \vec{v}^2$
 - potential energy of gravitation $E_{pot} = \int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) d\vec{x} = -mg \int_{\vec{x}_1}^{\vec{x}_2} d\vec{x} = -mgh$ The quantity $V(\vec{x}) = -\int_{\vec{x}_1}^{\vec{x}_2} \vec{F}(\vec{x}) d\vec{x}$ is called potential.
- Conservation of energy if $E(t_1) = E(t_2) = const$ is valid for any times $t_1, t_2 \rightarrow \frac{\mathrm{d}E(t)}{\mathrm{d}t} = \lim_{\Delta t} \frac{E(t+\Delta t)-E(t)}{\Delta t} = 0$. From Newton's second law and the use of the chain rule we find $\frac{\mathrm{d}E_{kin}}{\mathrm{d}t} = \frac{m}{2} \frac{\mathrm{d}(\dot{x}(t))^2}{\mathrm{d}t} = m\ddot{x}\dot{x} = -V'(x(t))\dot{x} = -\dot{V}(x(t))$. Thus the total Energy $E = E_{kin} + V$ is conserved.

4 Collisions

- Newton third law $\vec{F}_{12} = -\vec{F}_{21}$ leads to $m_1\ddot{\vec{x}}_1 = -m_2\ddot{x}_2 \to \frac{\mathrm{d}(m_1\dot{x}_1 + m_2\dot{x}_2)}{\mathrm{d}t}$. Thus the total momentum $p_{tot} = \sum m_i\dot{x}_i$ is conserved.
- In total elastic collisions the energy is conserved, too.
- In total inelastic collisions the energy is not conserved. Thus the difference $Q = E_{initial} E_{end}$ is called the heat.

Exercises

- 1. Consider a mass m on one end of a spring with spring constant D connected to a wall. If the mass is moved x_0 from the equilibrium position what is its velocity when it passes through the equilibrium position?
- 2. A mass m moves towards an inclined plane with velocity v. At which height does its velocity vanishes?
- 3. Consider two masses m_1 , m_2 with initial velocities v_1 , v_2 which can only move in one dimension. Calculate the velocities after a central collision.
- 4. Consider a mass $m_1 = 10$ kg with initial velocity $\vec{v}_1 = 1 \frac{\text{m}}{\text{s}} \vec{e}_x$ which is moving toward a stationary mass $m_2 = 5$ kg. After the collision both masses glues together. What is the velocity \vec{v}_1' after the collision? How much energy is disbated into heat?
- 5. What is the potential energy of a particle which slides in a salad bowl modeled by $y = cx^2$?
- 6. Calculate the frequency $f = \frac{1}{2\pi}\omega$ of a particle with mass m sliding in a salad bowl modeled by $y = cx^2$.
- 7. State the position x(t) and Period $T=\frac{2\pi}{\omega}$ of the oscillation of a mass m=1kg attached to spring with constant $D=4\frac{\rm N}{\rm m}$ connected to a wall.
- 8. Determine the position of the mass of the last system when it slides on a table with stokes constant $\gamma_S = 2\frac{\text{kg}}{\text{s}}$.
- 9. Consider a uniform rod of mass m and length L which is pivoted at one end. Calculate the moment of inertia and state the frequency $2\pi\omega$ of the oscillation.
- 10. Determine the moment of inertia of a disk with radius r which is rotated along an axis with distance a to the center of the disk and perpendicular to the disk.