KIT - INTERNATIONAL DEPARTMENT GMBH

Pre-Semester Physics - Exercises Sun

Summer 2010

Stefan Kremer stefan.kremer@ensicaen.fr

Extra Sheet VI 19.9.2010

1. Exercise:

Copyright @ (2011) Stefan Kremer. Permission granted to reproduce for personal and educational use only. Commercial copying, hiring, lending is prohibited.

Consider the above resistor network with resistances of $R_1 = 2.5 \Omega$, $R_2 = 2 \Omega$, $R_3 = 4 \Omega$, $R_4 = 0.2 \Omega$ and $R_5 = 0.6 \Omega$. On it a voltage of $U_0 = 3.0 \text{ V}$ is applied. The goal is to calculate the power dissipated in the resistor R_5 .

(a) Redraw the circuit so that parallel and series connections are more apparent (e.g. when all resistors are positioned horizontally).

(b) Specify therein the substitution resistances R_a (containing (not only) the resistor R_4), R_b (containing (not only) the resistor R_3), R_c (which do not contain the resistor R_1) and R_d (containing (not only) the resistor R_1) which are given either by pure series or parallel connection.

(c) How are the substitution resistances connected to the ones given?

(d) Use Ohm's law to calculate the current I_0 provided by the voltage source.

(e) Now consider the components of R_d . What current flows through each of them?

(f) Use again Ohm's law to determine the voltage drop on its components.

(g) Next focus on the components of R_c . What voltage drop on each of its components?

(h) Find the current through each of its components.

(i) Finally consider the components of R_a and state the current which flows through them.

(j) Calculate the voltage drop along its components.

(k) Use your results to give the power dissipated in the resistor R_5 .

$$\underline{P_5} =$$